3.649 \(\int \frac{1}{(d+e x) \sqrt{f+g x} \sqrt{a+c x^2}} \, dx\)

Optimal. Leaf size=167 \[ -\frac{2 \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \Pi \left (\frac{2 e}{\frac{\sqrt{c} d}{\sqrt{-a}}+e};\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|\frac{2 \sqrt{-a} g}{\sqrt{c} f+\sqrt{-a} g}\right )}{\sqrt{a+c x^2} \sqrt{f+g x} \left (\frac{\sqrt{c} d}{\sqrt{-a}}+e\right )} \]

[Out]

(-2*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticPi[(2*e)/((Sqrt[c]*d)/Sqrt[
-a] + e), ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (2*Sqrt[-a]*g)/(Sqrt[c]*f + Sqrt[-a]*g)])/(((Sqrt[c]
*d)/Sqrt[-a] + e)*Sqrt[f + g*x]*Sqrt[a + c*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.336181, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {933, 168, 538, 537} \[ -\frac{2 \sqrt{\frac{c x^2}{a}+1} \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{-a} g+\sqrt{c} f}} \Pi \left (\frac{2 e}{\frac{\sqrt{c} d}{\sqrt{-a}}+e};\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|\frac{2 \sqrt{-a} g}{\sqrt{c} f+\sqrt{-a} g}\right )}{\sqrt{a+c x^2} \sqrt{f+g x} \left (\frac{\sqrt{c} d}{\sqrt{-a}}+e\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

(-2*Sqrt[(Sqrt[c]*(f + g*x))/(Sqrt[c]*f + Sqrt[-a]*g)]*Sqrt[1 + (c*x^2)/a]*EllipticPi[(2*e)/((Sqrt[c]*d)/Sqrt[
-a] + e), ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (2*Sqrt[-a]*g)/(Sqrt[c]*f + Sqrt[-a]*g)])/(((Sqrt[c]
*d)/Sqrt[-a] + e)*Sqrt[f + g*x]*Sqrt[a + c*x^2])

Rule 933

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-(c
/a), 2]}, Dist[Sqrt[1 + (c*x^2)/a]/Sqrt[a + c*x^2], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]
), x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] &&  !GtQ[a, 0]

Rule 168

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{1}{(d+e x) \sqrt{f+g x} \sqrt{a+c x^2}} \, dx &=\frac{\sqrt{1+\frac{c x^2}{a}} \int \frac{1}{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}} \sqrt{1+\frac{\sqrt{c} x}{\sqrt{-a}}} (d+e x) \sqrt{f+g x}} \, dx}{\sqrt{a+c x^2}}\\ &=-\frac{\left (2 \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2-x^2} \left (\frac{\sqrt{c} d}{\sqrt{-a}}+e-e x^2\right ) \sqrt{f+\frac{\sqrt{-a} g}{\sqrt{c}}-\frac{\sqrt{-a} g x^2}{\sqrt{c}}}} \, dx,x,\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}\right )}{\sqrt{a+c x^2}}\\ &=-\frac{\left (2 \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{1+\frac{c x^2}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2-x^2} \left (\frac{\sqrt{c} d}{\sqrt{-a}}+e-e x^2\right ) \sqrt{1-\frac{\sqrt{-a} g x^2}{\sqrt{c} \left (f+\frac{\sqrt{-a} g}{\sqrt{c}}\right )}}} \, dx,x,\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}\right )}{\sqrt{f+g x} \sqrt{a+c x^2}}\\ &=-\frac{2 \sqrt{\frac{\sqrt{c} (f+g x)}{\sqrt{c} f+\sqrt{-a} g}} \sqrt{1+\frac{c x^2}{a}} \Pi \left (\frac{2 e}{\frac{\sqrt{c} d}{\sqrt{-a}}+e};\sin ^{-1}\left (\frac{\sqrt{1-\frac{\sqrt{c} x}{\sqrt{-a}}}}{\sqrt{2}}\right )|\frac{2 \sqrt{-a} g}{\sqrt{c} f+\sqrt{-a} g}\right )}{\left (\frac{\sqrt{c} d}{\sqrt{-a}}+e\right ) \sqrt{f+g x} \sqrt{a+c x^2}}\\ \end{align*}

Mathematica [C]  time = 0.965371, size = 311, normalized size = 1.86 \[ -\frac{2 i (f+g x) \sqrt{\frac{g \left (x+\frac{i \sqrt{a}}{\sqrt{c}}\right )}{f+g x}} \sqrt{-\frac{-g x+\frac{i \sqrt{a} g}{\sqrt{c}}}{f+g x}} \left (\text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right ),\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )-\Pi \left (\frac{\sqrt{c} (e f-d g)}{e \left (\sqrt{c} f+i \sqrt{a} g\right )};i \sinh ^{-1}\left (\frac{\sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}}}{\sqrt{f+g x}}\right )|\frac{\sqrt{c} f-i \sqrt{a} g}{\sqrt{c} f+i \sqrt{a} g}\right )\right )}{\sqrt{a+c x^2} \sqrt{-f-\frac{i \sqrt{a} g}{\sqrt{c}}} (e f-d g)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]),x]

[Out]

((-2*I)*Sqrt[(g*((I*Sqrt[a])/Sqrt[c] + x))/(f + g*x)]*Sqrt[-(((I*Sqrt[a]*g)/Sqrt[c] - g*x)/(f + g*x))]*(f + g*
x)*(EllipticF[I*ArcSinh[Sqrt[-f - (I*Sqrt[a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f
+ I*Sqrt[a]*g)] - EllipticPi[(Sqrt[c]*(e*f - d*g))/(e*(Sqrt[c]*f + I*Sqrt[a]*g)), I*ArcSinh[Sqrt[-f - (I*Sqrt[
a]*g)/Sqrt[c]]/Sqrt[f + g*x]], (Sqrt[c]*f - I*Sqrt[a]*g)/(Sqrt[c]*f + I*Sqrt[a]*g)]))/(Sqrt[-f - (I*Sqrt[a]*g)
/Sqrt[c]]*(e*f - d*g)*Sqrt[a + c*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.296, size = 235, normalized size = 1.4 \begin{align*} 2\,{\frac{ \left ( cf-\sqrt{-ac}g \right ) \sqrt{c{x}^{2}+a}\sqrt{gx+f}}{c \left ( dg-ef \right ) \left ( cg{x}^{3}+cf{x}^{2}+agx+af \right ) }{\it EllipticPi} \left ( \sqrt{-{\frac{c \left ( gx+f \right ) }{\sqrt{-ac}g-cf}}},{\frac{ \left ( \sqrt{-ac}g-cf \right ) e}{c \left ( dg-ef \right ) }},\sqrt{-{\frac{\sqrt{-ac}g-cf}{\sqrt{-ac}g+cf}}} \right ) \sqrt{{\frac{ \left ( cx+\sqrt{-ac} \right ) g}{\sqrt{-ac}g-cf}}}\sqrt{{\frac{ \left ( -cx+\sqrt{-ac} \right ) g}{\sqrt{-ac}g+cf}}}\sqrt{-{\frac{c \left ( gx+f \right ) }{\sqrt{-ac}g-cf}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(c*f-(-a*c)^(1/2)*g)*EllipticPi((-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2),((-a*c)^(1/2)*g-c*f)*e/c/(d*g-e*f),(
-((-a*c)^(1/2)*g-c*f)/((-a*c)^(1/2)*g+c*f))^(1/2))*((c*x+(-a*c)^(1/2))*g/((-a*c)^(1/2)*g-c*f))^(1/2)*((-c*x+(-
a*c)^(1/2))*g/((-a*c)^(1/2)*g+c*f))^(1/2)*(-(g*x+f)*c/((-a*c)^(1/2)*g-c*f))^(1/2)*(c*x^2+a)^(1/2)*(g*x+f)^(1/2
)/c/(d*g-e*f)/(c*g*x^3+c*f*x^2+a*g*x+a*f)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*sqrt(g*x + f)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a + c x^{2}} \left (d + e x\right ) \sqrt{f + g x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(1/(sqrt(a + c*x**2)*(d + e*x)*sqrt(f + g*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{2} + a}{\left (e x + d\right )} \sqrt{g x + f}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + a)*(e*x + d)*sqrt(g*x + f)), x)